Rigid 10K Rigid 10K Resin for Rigid, Strong, Industrial-Grade Prototypes This highly glass-filled resin is the stiffest material in our engineering portfolio. Choose Rigid 10K Resin for precise industrial parts that need to withstand significant load without bending. Rigid 10K Resin has a smooth matte finish and is highly resistant to heat and chemicals. Short-run injection molds and inserts Heat resistant and fluid exposed components, jigs, and fixtures Aerodynamic test models Simulates stiffness of glass and fiber-filled thermoplastics Prepared 10.07.2020 Rev 01 - 10.07.2020 | | METRIC | | | IMPERIAL | | | METHOD | |----------------------------------|------------|----------------------------|---------------------------|---------------|----------------------------|---------------------------|---------------| | | Green | UV Post-cured ¹ | UV + Thermal ² | Green | UV Post-cured ¹ | UV + Thermal ² | | | Tensile Properties | | | | | | | ı | | Ultimate Tensile Strength | 55 MPa | 65 MPa | 53 MPa | 7980 psi | 9460 psi | 7710 psi | ASTM D638-14 | | Tensile Modulus | 7.5 GPa | 10 GPa | 10 GPa | 1090 ksi | 1480 ksi | 1460 ksi | ASTM D638-14 | | Elongation at Break | 2% | 1% | 1% | 2% | 1% | 1% | ASTM D638-14 | | Flexural Strength | 84 MPa | 126 MPa | 103 MPa | 12200 | 18200 | 15000 | ASTM D 790-15 | | Flexural Properties | | | | | | | • | | Flexural Modulus | 6 GPa | 9 GPa | 10 GPa | 905 | 1360 | 1500 | ASTM D 790-15 | | Impact Properties | | | | | | | , | | Notched IZOD | 16 J/m | 16 J/m | 18 J/m | 0.3 ft-lbf/in | 0.3 ft-lbf/in | 0.3 ft-lbf/in | ASTM D256-10 | | Temperature Properties | | | | | | | | | Heat Deflection Temp. @ 1.8 MPa | 56 °C | 82 °C | 110 °C | 133 °F | 180 °F | 230 °F | ASTM D 648-16 | | Heat Deflection Temp. @ 0.45 MPa | 65 °C | 163 °C | 218 °C | 149 °F | 325 °F | 424 °F | ASTM D 648-16 | | Thermal Expansion, 0-150 °C | 48 μm/m/°C | 47 μm/m/°C | 46 μm/m/°C | 27 μin/in/°F | 26 μin/in/°F | 26 μin/in/°F | ASTM E 831-13 | Material properties can vary with part geometry, print orientation, print settings, and temperature. All testing was done on Form 3. 1Data was obtained from parts printed using Form 3, 100 μm and post-cured with a Formcure for 60 minutes at 70 °C. ² Data was obtained from parts printed using Form 3, 100 µm and post-cured with a Formcure for 60 minutes at 60 °C and an additional thermal cure at 90 °C for 125 minutes. ## **SOLVENT COMPATIBILITY** Percent weight gain over 24 hours for a printed and post-cured 1 x 1 x 1 cm cube immersed in respective solvent: | Solvent | 24 hr weight gain, % | Solvent | 24 hr weight gain, % | |---------------------------------|----------------------|---|----------------------| | Acetic Acid 5% | < 0.1 | Mineral oil (Light) | 0.2 | | Acetone | < 0.1 | Mineral oil (Heavy) | < 0.1 | | Bleach ~5% NaOCl | 0.1 | Salt Water (3.5% NaCl) | 0.1 | | Butyl Acetate | 0.1 | Skydrol 5 | 0.6 | | Diesel Fuel | 0.1 | Sodium Hydroxide solution
(0.025% PH 10) | 0.1 | | Diethyl glycol Monomethyl Ether | 0.4 | Strong Acid (HCl conc) | 0.2 | | Hydraulic Oil | 0.2 | Tripropylene glycol
monomethyl ether | 0.4 | | Hydrogen peroxide (3%) | < 0.1 | Water | < 0.1 | | Isooctane (aka gasoline) | 0.0 | Xylene | < 0.1 | | Isopropyl Alcohol | < 0.1 | | |